Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604387

RESUMO

BACKGROUND AND AIMS: In individuals highly exposed to hepatitis C virus (HCV), reinfection is common, suggesting that natural development of sterilising immunity is difficult. In those that are reinfected, some will develop a persistent infection, while a small proportion repeatedly clear the virus, suggesting natural protection is possible. The aim of this study was to characterise immune responses associated with rapid natural clearance of HCV reinfection. METHODS: Broad neutralising antibodies (BnAbs) and Envelope 2 (E2)-specific memory B cell (MBCs) responses were examined longitudinally in 15 subjects with varied reinfection outcomes. RESULTS: BnAb responses were associated with MBC recall, but not with reinfection clearance. Strong evidence of antigen imprinting was found, and the B cell receptor repertoire showed a high level of clonality with ongoing somatic hypermutation of many clones over subsequent reinfection events. Single cell transcriptomic analyses showed that cleared reinfections featured an activated transcriptomic profile in HCV-specific B cells that rapidly expanded upon reinfection. CONCLUSIONS: MBC quality, but not necessarily breadth of nAb responses, is important for protection against antigenically diverse variants, which is encouraging for HCV vaccine development.

2.
Front Immunol ; 15: 1352440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420130

RESUMO

Background: Hepatitis C virus (HCV) infections are more prevalent in people who inject drugs (PWID) who often experience additional health risks. HCV induces inflammation and immune alterations that contribute to hepatic and non-hepatic morbidities. It remains unclear whether curative direct acting antiviral (DAA) therapy completely reverses immune alterations in PWID. Methods: Plasma biomarkers of immune activation associated with chronic disease risk were measured in HCV-seronegative (n=24) and HCV RNA+ (n=32) PWID at baseline and longitudinally after DAA therapy. Adjusted generalised estimating equations were used to assess longitudinal changes in biomarker levels. Comparisons between community controls (n=29) and HCV-seronegative PWID were made using adjusted multiple regression modelling. Results: HCV-seronegative PWID exhibited significantly increased levels of inflammatory biomarkers including soluble (s) TNF-RII, IL-6, sCD14 and sCD163 and the diabetes index HbA1c as compared to community controls. CXCL10, sTNF-RII, vascular cell adhesion molecule-1 and lipopolysaccharide binding protein (LBP) were additionally elevated in PWID with viremic HCV infection as compared to HCV- PWID. Whilst curative DAA therapy reversed some biomarkers, others including LBP and sTNF-RII remained elevated 48 weeks after HCV cure. Conclusion: Elevated levels of inflammatory and chronic disease biomarkers in PWID suggest an increased risk of chronic morbidities such as diabetes and cardiovascular disease. HCV infection in PWID poses an additional disease burden, amplified by the incomplete reversal of immune dysfunction following DAA therapy. These findings highlight the need for heightened clinical surveillance of PWID for chronic inflammatory diseases, particularly those with a history of HCV infection.


Assuntos
Diabetes Mellitus , Hepatite C Crônica , Hepatite C , Abuso de Substâncias por Via Intravenosa , Humanos , Hepacivirus , Antivirais/uso terapêutico , Abuso de Substâncias por Via Intravenosa/complicações , Abuso de Substâncias por Via Intravenosa/tratamento farmacológico , Abuso de Substâncias por Via Intravenosa/epidemiologia , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Hepatite C/complicações , Hepatite C/tratamento farmacológico , Biomarcadores , Diabetes Mellitus/tratamento farmacológico
3.
Microbiol Spectr ; 12(1): e0343723, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078716

RESUMO

IMPORTANCE: The world is facing a measles resurgence, and improved diagnostic tests for measles infection are an urgent World Health Organization research priority. Detection of measles-specific immunoglobulin M (IgM) as a standard diagnostic test has low positive predictive value in elimination settings, and there is a need for new biomarkers of measles infection to enable enhanced surveillance and response to outbreaks. We demonstrate the detection of measles-specific dimeric immunoglobulin A (dIgA) in patients with confirmed measles infections using a new indirect enzyme-linked immunosorbent assay protocol that selects for the dIgA fraction from total IgA in the blood. The magnitude of measles-specific dIgA responses showed a low correlation with IgM responses, and our results highlight the potential of dIgA for further development as an alternative and/or complementary biomarker to IgM for serological diagnosis of measles infection.


Assuntos
Imunoglobulina A , Sarampo , Humanos , Anticorpos Antivirais , Sarampo/diagnóstico , Sarampo/epidemiologia , Valor Preditivo dos Testes , Imunoglobulina M , Biomarcadores
4.
Immunol Cell Biol ; 101(9): 857-866, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37593973

RESUMO

Current serological tests cannot differentiate between total immunoglobulin A (IgA) and dimeric IgA (dIgA) associated with mucosal immunity. Here, we describe two new assays, dIgA-ELISA and dIgA-multiplex bead assay (MBA), that utilize the preferential binding of dIgA to a chimeric form of secretory component, allowing the differentiation between dIgA and monomeric IgA. dIgA responses elicited through severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were measured in (i) a longitudinal panel, consisting of 74 samples (n = 20 individuals) from hospitalized cases of coronavirus disease 2019 (COVID-19); (ii) a longitudinal panel, consisting of 96 samples (n = 10 individuals) from individuals with mild COVID-19; (iii) a cross-sectional panel with PCR-confirmed SARS-CoV-2 infection with mild COVID-19 (n = 199) and (iv) pre-COVID-19 samples (n = 200). The dIgA-ELISA and dIgA-MBA demonstrated a specificity for dIgA of 99% and 98.5%, respectively. Analysis of dIgA responses in the longitudinal panels revealed that 70% (ELISA) and 50% (MBA) of patients elicited a dIgA response by day 20 after PCR diagnosis with a SARS-CoV-2 infection. Individuals with mild COVID-19 displayed increased levels of dIgA within the first 3 weeks after diagnosis but responses appeared to be short lived, compared with sustained IgA levels. However, in samples from hospitalized patients with COVID-19 we observed high and sustained levels of dIgA, up to 245 days after PCR diagnosis. Our results suggest that severe COVID-19 infections are associated with sustained levels of plasma dIgA compared with mild cases.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/metabolismo , Estudos Transversais , Imunoglobulina A , Anticorpos Antivirais , Imunoglobulina M
5.
J Clin Immunol ; 43(7): 1506-1518, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37322095

RESUMO

Following the COVID-19 pandemic, novel vaccines have successfully reduced severe disease and death. Despite eliciting lower antibody responses, adenoviral vector vaccines are nearly as effective as mRNA vaccines. Therefore, protection against severe disease may be mediated by immune memory cells. We here evaluated plasma antibody and memory B cells (Bmem) targeting the SARS-CoV-2 Spike receptor-binding domain (RBD) elicited by the adenoviral vector vaccine ChAdOx1 (AstraZeneca), their capacity to bind Omicron subvariants, and compared this to the response to mRNA BNT162b2 (Pfizer-BioNTech) vaccination. Whole blood was sampled from 31 healthy adults pre-vaccination and 4 weeks after dose one and dose two of ChAdOx1. Neutralizing antibodies (NAb) against SARS-CoV-2 were quantified at each time point. Recombinant RBDs of the Wuhan-Hu-1 (WH1), Delta, BA.2, and BA.5 variants were produced for ELISA-based quantification of plasma IgG and incorporated separately into fluorescent tetramers for flow cytometric identification of RBD-specific Bmem. NAb and RBD-specific IgG levels were over eight times lower following ChAdOx1 vaccination than BNT162b2. In ChAdOx1-vaccinated individuals, median plasma IgG recognition of BA.2 and BA.5 as a proportion of WH1-specific IgG was 26% and 17%, respectively. All donors generated resting RBD-specific Bmem, which were boosted after the second dose of ChAdOx1 and were similar in number to those produced by BNT162b2. The second dose of ChAdOx1 boosted Bmem that recognized VoC, and 37% and 39% of WH1-specific Bmem recognized BA.2 and BA.5, respectively. These data uncover mechanisms by which ChAdOx1 elicits immune memory to confer effective protection against severe COVID-19.


Assuntos
Vacina BNT162 , COVID-19 , Adulto , Humanos , Células B de Memória , Pandemias , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Adenoviridae , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Antivirais
6.
PLoS Pathog ; 19(5): e1010981, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200378

RESUMO

The spike (S) glycoprotein of SARS CoV-2 is the target of neutralizing antibodies (NAbs) that are crucial for vaccine effectiveness. The S1 subunit binds ACE2 while the S2 subunit mediates virus-cell membrane fusion. S2 is a class I fusion glycoprotein subunit and contains a central coiled coil that acts as a scaffold for the conformational changes associated with fusion function. The coiled coil of S2 is unusual in that the 3-4 repeat of inward-facing positions are mostly occupied by polar residues that mediate few inter-helical contacts in the prefusion trimer. We examined how insertion of bulkier hydrophobic residues (Val, Leu, Ile, Phe) to fill a cavity next to Ala1016 and Ala1020 in the 3-4 repeat affects the stability and antigenicity of S trimers. Substitution of Ala1016 with bulkier hydrophobic residues in the context of a prefusion-stabilized S trimer, S2P-FHA, was associated with increased thermal stability. S glycoprotein membrane fusion function was retained with Ala1016/Ala1020 cavity-filling mutations associated with improved recombinant S2P-FHA thermostability, however 2 mutants, A1016L and A1016V/A1020I, lacked ability to mediate entry of S-HIV-1 pseudoparticles into 293-ACE2 cells. When assessed as immunogens, two thermostable S2P-FHA mutants derived from the ancestral isolate, A1016L (16L) and A1016V/A1020I (VI) elicited neutralizing antibody with 50%-inhibitory dilutions (ID50s) in the range 2,700-5,110 for ancestral and Delta-derived viruses, and 210-1,744 for Omicron BA.1. The antigens elicited antibody specificities directed to the receptor-binding domain (RBD), N-terminal domain (NTD), fusion peptide and stem region of S2. The VI mutation enabled the production of intrinsically stable Omicron BA.1 and Omicron BA.4/5 S2P-FHA-like ectodomain oligomers in the absence of an external trimerization motif (T4 foldon), thus representing an alternative approach for stabilizing oligomeric S glycoprotein vaccines.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave , Humanos , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes
7.
Liver Int ; 43(5): 989-999, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36719055

RESUMO

BACKGROUND: Alanine aminotransferase (ALT) measurement is essential for evaluation of liver disease. We validated a novel rapid point-of-care (POC) test for ALT1 against laboratory ALT. METHODS: Stored plasma samples from adults with chronic liver disease (Test cohort n = 240; Validation cohort n = 491) were analysed using the BioPoint® antigen immunoassay POC ALT1 lateral flow test, which provides quantitative ALT results (Axxin handheld reader) or semi-quantitative results (visual read, cut off 40 IU/ml). The accuracy of POC ALT1 to detect ALT > 40 IU/L was determined by ROC analysis. In patients with chronic hepatitis B, treatment eligibility (EASL criteria) was determined using POC ALT1 and compared to laboratory ALT. RESULTS: POC ALT1 test had good accuracy for laboratory ALT > 40 IU/L: AUROC 0.93 (95% CI: 0.89-0.96) in the Test cohort and AUROC 0.92 (95% CI: 0.88-0.95) in the Validation cohort. POC ALT1 cut off of 0.8 for ALT > 40 IU/L maximised sensitivity (97%) and specificity (71%) in the Test cohort (42% laboratory ALT > 40 IU/L) and yielded PPV 84% and NPV 91% in the Validation cohort (19% laboratory ALT > 40 IU/L). Semi-quantitative POC ALT1 had good accuracy for laboratory ALT in the Validation cohort (AUROC 0.85, 95% CI: 0.81-0.99; sensitivity 77% and specificity 93%). Combined with HBV DNA and transient elastography, both quantitative and semi-quantitative POC ALT1 tests had good accuracy for excluding hepatitis B treatment needs (sensitivity 96%, specificity 78% and NPV 99%). CONCLUSION: The POC ALT1 test had good accuracy for elevated ALT levels and for determining treatment eligibility among people with chronic hepatitis B.


Assuntos
Hepatite B Crônica , Hepatite B , Adulto , Humanos , Alanina Transaminase , Hepatite B Crônica/diagnóstico , Projetos Piloto , Estudos de Coortes , DNA Viral
10.
Artigo em Inglês | MEDLINE | ID: mdl-35805831

RESUMO

Syphilis, a curable sexually transmitted infection, has re-emerged as a global public health threat with an estimated 5.6 million new cases every year. Pregnant women and men who have sex with men are key target populations for syphilis control and prevention programs. Frequent syphilis testing for timely and accurate diagnosis of active infections for appropriate clinical management is a key strategy to effectively prevent disease transmission. However, there are persistent challenges in the diagnostic landscape and service delivery/testing models that hinder global syphilis control efforts. In this commentary, we summarise the current trends and challenges in diagnosis of active syphilis infection and identify the data gaps and key areas for research and development of novel point-of-care diagnostics which could help to overcome the present technological, individual and structural barriers in access to syphilis testing. We present expert opinion on future research which will be required to accelerate the validation and implementation of new point-of-care diagnostics in real-world settings.


Assuntos
Infecções por HIV , Minorias Sexuais e de Gênero , Infecções Sexualmente Transmissíveis , Sífilis , Feminino , Infecções por HIV/diagnóstico , Homossexualidade Masculina , Humanos , Masculino , Testes Imediatos , Gravidez , Infecções Sexualmente Transmissíveis/diagnóstico , Infecções Sexualmente Transmissíveis/prevenção & controle , Sífilis/diagnóstico , Sífilis/prevenção & controle
11.
Hepatology ; 76(4): 1190-1202, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35313015

RESUMO

BACKGROUND AND AIMS: A prophylactic vaccine targeting multiple HCV genotypes (gt) is urgently required to meet World Health Organization elimination targets. Neutralizing antibodies (nAbs) and CD4+ and CD8+ T cells are associated with spontaneous clearance of HCV, and each may contribute to protective immunity. However, current vaccine candidates generate either nAbs or T cells targeting genetically variable epitopes and have failed to show efficacy in human trials. We have previously shown that a simian adenovirus vector (ChAdOx1) encoding conserved sequences across gt1-6 (ChAd-Gt1-6), and separately gt-1a E2 protein with variable regions deleted (E2Δ123HMW ), generates pan-genotypic T cells and nAbs, respectively. We now aim to develop a vaccine to generate both viral-specific B- and T-cell responses concurrently. APPROACH AND RESULTS: We show that vaccinating with ChAd-Gt1-6 and E2Δ123HMW sequentially in mice generates T-cell and antibody (Ab) responses comparable to either vaccine given alone. We encoded E2Δ123 in ChAdOx1 (ChAd-E2Δ123) and show that this, given with an E2Δ123HMW protein boost, induces greater CD81-E2 inhibitory and HCV-pseudoparticle nAb titers compared to the E2Δ123HMW prime boost. We developed bivalent viral vector vaccines (ChAdOx1 and modified vaccinia Ankara [MVA]) encoding both Gt1-6 and E2Δ123 immunogens (Gt1-6-E2Δ123) generating polyfunctional CD4+ and CD8+ T cells and nAb titers in prime/boost strategies. This approach generated nAb responses comparable to monovalent E2Δ123 ChAd/MVA vaccines and superior to three doses of recombinant E2Δ123HMW protein, while also generating high-magnitude T-cell responses. CONCLUSIONS: These data are an important step forward for the development of a pan-genotype HCV vaccine to elicit T cells and nAbs for future assessment in humans.


Assuntos
Hepatite C , Vacinas , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Epitopos , Genótipo , Hepacivirus/genética , Hepatite C/prevenção & controle , Anticorpos Anti-Hepatite C , Humanos , Camundongos , Vírus Vaccinia/genética
12.
J Virol ; 96(5): e0167521, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34986001

RESUMO

A vaccine to prevent hepatitis C virus (HCV) infection is urgently needed for use alongside direct-acting antiviral drugs to achieve elimination targets. We have previously shown that a soluble recombinant form of the glycoprotein E2 ectodomain (residues 384 to 661) that lacks three variable regions (Δ123) is able to elicit a higher titer of broadly neutralizing antibodies (bNAbs) than the parental form (receptor-binding domain [RBD]). In this study, we engineered a viral nanoparticle that displays HCV glycoprotein E2 on a duck hepatitis B virus (DHBV) small surface antigen (S) scaffold. Four variants of E2-S virus-like particles (VLPs) were constructed: Δ123-S, RBD-S, Δ123A7-S, and RBDA7-S; in the last two, 7 cysteines were replaced with alanines. While all four E2-S variant VLPs display E2 as a surface antigen, the Δ123A7-S and RBDA7-S VLPs were the most efficiently secreted from transfected mammalian cells and displayed epitopes recognized by cross-genotype broadly neutralizing monoclonal antibodies (bNMAbs). Both Δ123A7-S and RBDA7-S VLPs were immunogenic in guinea pigs, generating high titers of antibodies reactive to native E2 and able to prevent the interaction between E2 and the cellular receptor CD81. Four out of eight animals immunized with Δ123A7-S elicited neutralizing antibodies (NAbs), with three of those animals generating bNAbs against 7 genotypes. Immune serum generated by animals with NAbs mapped to major neutralization epitopes located at residues 412 to 420 (epitope I) and antigenic region 3. VLPs that display E2 glycoproteins represent a promising vaccine platform for HCV and could be adapted to large-scale manufacturing in yeast systems. IMPORTANCE There is currently no vaccine to prevent hepatitis C virus infection, which affects more than 71 million people globally and is a leading cause of progressive liver disease, including cirrhosis and cancer. Broadly neutralizing antibodies that recognize the E2 envelope glycoprotein can protect against heterologous viral infection and correlate with viral clearance in humans. However, broadly neutralizing antibodies are difficult to generate due to conformational flexibility of the E2 protein and epitope occlusion. Here, we show that a VLP vaccine using the duck hepatitis B virus S antigen fused to HCV glycoprotein E2 assembles into virus-like particles that display epitopes recognized by broadly neutralizing antibodies and elicit such antibodies in guinea pigs. This platform represents a novel HCV vaccine candidate amenable to large-scale manufacture at low cost.


Assuntos
Hepacivirus , Hepatite C , Proteínas do Envelope Viral , Vacinas contra Hepatite Viral , Animais , Antígenos de Superfície/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Epitopos/imunologia , Cobaias , Hepacivirus/genética , Hepacivirus/imunologia , Antígenos de Superfície da Hepatite B/química , Hepatite C/imunologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia
13.
Gastroenterology ; 162(2): 562-574, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34655573

RESUMO

BACKGROUND & AIMS: Development of a prophylactic hepatitis C virus (HCV) vaccine will require accurate and reproducible measurement of neutralizing breadth of vaccine-induced antibodies. Currently available HCV panels may not adequately represent the genetic and antigenic diversity of circulating HCV strains, and the lack of standardization of these panels makes it difficult to compare neutralization results obtained in different studies. Here, we describe the selection and validation of a genetically and antigenically diverse reference panel of 15 HCV pseudoparticles (HCVpps) for neutralization assays. METHODS: We chose 75 envelope (E1E2) clones to maximize representation of natural polymorphisms observed in circulating HCV isolates, and 65 of these clones generated functional HCVpps. Neutralization sensitivity of these HCVpps varied widely. HCVpps clustered into 15 distinct groups based on patterns of relative sensitivity to 7 broadly neutralizing monoclonal antibodies. We used these data to select a final panel of 15 antigenically representative HCVpps. RESULTS: Both the 65 and 15 HCVpp panels span 4 tiers of neutralization sensitivity, and neutralizing breadth measurements for 7 broadly neutralizing monoclonal antibodies were nearly equivalent using either panel. Differences in neutralization sensitivity between HCVpps were independent of genetic distances between E1E2 clones. CONCLUSIONS: Neutralizing breadth of HCV antibodies should be defined using viruses spanning multiple tiers of neutralization sensitivity rather than panels selected solely for genetic diversity. We propose that this multitier reference panel could be adopted as a standard for the measurement of neutralizing antibody potency and breadth, facilitating meaningful comparisons of neutralization results from vaccine studies in different laboratories.


Assuntos
Variação Antigênica/imunologia , Antígenos Virais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Hepacivirus/imunologia , Testes de Neutralização/métodos , Proteínas do Envelope Viral/imunologia , Variação Antigênica/genética , Antígenos Virais/genética , Linhagem Celular Tumoral , Hepacivirus/genética , Hepatite C/prevenção & controle , Humanos , Imunogenicidade da Vacina , Reprodutibilidade dos Testes , Desenvolvimento de Vacinas , Proteínas do Envelope Viral/genética , Vacinas contra Hepatite Viral/imunologia
14.
EBioMedicine ; 74: 103729, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34871960

RESUMO

BACKGROUND: As vaccines against SARS-CoV-2 are now being rolled out, a better understanding of immunity to the virus, whether from infection, or passive or active immunisation, and the durability of this protection is required. This will benefit from the ability to measure antibody-based protection to SARS-CoV-2, ideally with rapid turnaround and without the need for laboratory-based testing. METHODS: We have developed a lateral flow POC test that can measure levels of RBD-ACE2 neutralising antibody (NAb) from whole blood, with a result that can be determined by eye or quantitatively on a small instrument. We compared our lateral flow test with the gold-standard microneutralisation assay, using samples from convalescent and vaccinated donors, as well as immunised macaques. FINDINGS: We show a high correlation between our lateral flow test with conventional neutralisation and that this test is applicable with animal samples. We also show that this assay is readily adaptable to test for protection to newly emerging SARS-CoV-2 variants, including the beta variant which revealed a marked reduction in NAb activity. Lastly, using a cohort of vaccinated humans, we demonstrate that our whole-blood test correlates closely with microneutralisation assay data (specificity 100% and sensitivity 96% at a microneutralisation cutoff of 1:40) and that fingerprick whole blood samples are sufficient for this test. INTERPRETATION: Taken together, the COVID-19 NAb-testTM device described here provides a rapid readout of NAb based protection to SARS-CoV-2 at the point of care. FUNDING: Support was received from the Victorian Operational Infrastructure Support Program and the Australian Government Department of Health. This work was supported by grants from the Department of Health and Human Services of the Victorian State Government; the ARC (CE140100011, CE140100036), the NHMRC (1113293, 2002317 and 1116530), and Medical Research Future Fund Awards (2005544, 2002073, 2002132). Individual researchers were supported by an NHMRC Emerging Leadership Level 1 Investigator Grants (1194036), NHMRC APPRISE Research Fellowship (1116530), NHMRC Leadership Investigator Grant (1173871), NHMRC Principal Research Fellowship (1137285), NHMRC Investigator Grants (1177174 and 1174555) and NHMRC Senior Principal Research Fellowships (1117766 and 1136322). Grateful support was also received from the A2 Milk Company and the Jack Ma Foundation.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/imunologia , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2/imunologia , Animais , Austrália , Vacinas contra COVID-19/imunologia , Humanos , Macaca/imunologia , Testes de Neutralização , Vacinação
15.
Viruses ; 13(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34578419

RESUMO

Viral hepatitis remains one of the most significant health issues globally, directly responsible for over 1 million deaths each year and affecting almost 300 million people around the world. Scientific research in recent decades has brought about improvements in the lives of people living with chronic viral hepatitis. On the 29 July 2021, the Australian Centre for Hepatitis Virology (ACHV) for the first time held a public educational forum for the general public. The main aim of this event was to inform the affected community about the importance of scientific research and give an overview of upcoming developments in the field. Here, we provide a detailed report of the panel discussion (including its organisation, execution, and lessons learned to incorporate into future events) and provide strategies that can be used by other scientific societies to hold similar events in their own communities.


Assuntos
Pesquisa Biomédica , Relações Comunidade-Instituição , Hepatite B , Hepatite C , Austrália , Hepacivirus , Vírus da Hepatite B , Humanos
16.
medRxiv ; 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34230936

RESUMO

Current tests for SARS-CoV-2 antibodies (IgG, IgM, IgA) cannot differentiate recent and past infections. We describe a point of care, lateral flow assay for SARS-CoV-2 dIgA based on the highly selective binding of dIgA to a chimeric form of secretory component (CSC), that distinguishes dIgA from monomeric IgA. Detection of specific dIgA uses a complex of biotinylated SARS-CoV-2 receptor binding domain and streptavidin-colloidal gold. SARS-CoV-2-specific dIgA was measured both in 112 cross-sectional samples and a longitudinal panel of 362 plasma samples from 45 patients with PCR-confirmed SARS-CoV-2 infection, and 193 discrete pre-COVID-19 or PCR-negative patient samples. The assay demonstrated 100% sensitivity from 11 days post-symptom onset, and a specificity of 98.2%. With an estimated half-life of 6.3 days, dIgA provides a unique biomarker for the detection of recent SARS-CoV-2 infections with potential to enhance diagnosis and management of COVID-19 at point-of-care.

17.
Viruses ; 13(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946211

RESUMO

Direct-acting antiviral agents have proven highly effective at treating existing hepatitis C infections but despite their availability most countries will not reach the World Health Organization targets for elimination of HCV by 2030. A prophylactic vaccine remains a high priority. Whilst early vaccines focused largely on generating T cell immunity, attention is now aimed at vaccines that generate humoral immunity, either alone or in combination with T cell-based vaccines. High-resolution structures of hepatitis C viral glycoproteins and their interaction with monoclonal antibodies isolated from both cleared and chronically infected people, together with advances in vaccine technologies, provide new avenues for vaccine development.


Assuntos
Bioengenharia , Hepacivirus/imunologia , Hepatite C/imunologia , Hepatite C/prevenção & controle , Interações Hospedeiro-Patógeno/imunologia , Imunidade Humoral , Vacinas contra Hepatite Viral/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos Virais/química , Antígenos Virais/imunologia , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Modelos Moleculares , Pesquisa , Relação Estrutura-Atividade , Vacinologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/classificação
18.
Immunol Cell Biol ; 98(10): 805-806, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33222362

RESUMO

The December 2020 issue contains a Special Feature on Infection and Immunity, featuring selected presentations from the 10th Lorne Infection and Immunity Conference. The breadth and excellence of science presented at this meeting is encompassed by the articles in this issue by Lamiable et al., Saunders et al. and Chua et al.


Assuntos
Imunidade , Infecções , Congressos como Assunto , Humanos
19.
Viruses ; 12(6)2020 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517260

RESUMO

The Australasian Virology Society (AVS) aims to promote, support and advocate for the discipline of virology in the Australasian region. The society was incorporated in 2011 after 10 years operating as the Australian Virology Group (AVG) founded in 2001, coinciding with the inaugural biennial scientific meeting. AVS conferences aim to provide a forum for the dissemination of all aspects of virology, foster collaboration, and encourage participation by students and post-doctoral researchers. The tenth Australasian Virology Society (AVS10) scientific meeting was held on 2-5 December 2019 in Queenstown, New Zealand. This report highlights the latest research presented at the meeting, which included cutting-edge virology presented by our international plenary speakers Ana Fernandez-Sesma and Benjamin tenOever, and keynote Richard Kuhn. AVS10 honoured female pioneers in Australian virology, Lorena Brown and Barbara Coulson. We report outcomes from the AVS10 career development session on "Successfully transitioning from post-doc to lab head", winners of best presentation awards, and the AVS gender equity policy, initiated in 2013. Plans for the 2021 meeting are underway which will celebrate the 20th anniversary of AVS where it all began, in Fraser Island, Queensland, Australia.


Assuntos
Virologia/organização & administração , Austrália , Distinções e Prêmios , Processos Grupais , Sociedades Científicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...